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Abstract  
 

This project demonstrates the coordinated discovery and capture of a mobile target using a colony of low-cost 
robots.  Many existing robot colonies use high-end components to guarantee results.  We show that a colony of 
inexpensive robots, which alone are insufficient to the task, can together overcome their shortcomings. Information 
about the environment is gathered via simple one-dimensional sensors, such as IR beacons, and shared wirelessly. 
The robots localize relative to one another by sharing their 1D range data.  All sensors are noisy and inaccurate, but 
when filtered, shared interpretation allows useful state information to emerge.  No one robot is in charge or knows 
the entire state of the world, but as a communal intelligence the colony does.  To search the world space for the 
target, the robots create regular formations and move as a coordinated mass.  Once the heated target is located via 
pyroelectric sensors, the robots communicate the target's position and form a strategy to capture it using behavioral 
paradigms.  We will demonstrate robots moving in a coordinated formation to surround and capture a target.  
 
1. Introduction 
 
Our goal is to create a colony of low cost, mobile, autonomous robots that work together to complete a variety of 
tasks.  There have been many colonies of robots in the past, but none have low cost solutions to complex problems 
such as relative localization.  One of the most successful colonies is the MIT Swarm.  This colony can relatively 
localize and create intelligent arrangements, but at a very high per-robot cost [1].  A lower cost colony robot will 
allow for larger colonies at lower costs.  This allows more people to have access to colonies for further research. 

Colonies of robots have many applications.  They can solve larger problems than individual robots.  The 
Idaho National Engineering and Environmental Laboratory has developed a colony of robots that seeks out liquid 
spills.  They surround the spill by having each robot locate part of the edge of the spill [2].  Our behavior goal is to 
track and surround a mobile heated target.  This will be accomplished by the use of inexpensive sensors and simple, 
but clever, algorithms. 

This paper discusses aspects of relative localization in low cost colony robots.  The following section 
discusses the background research of distributed sensor networks and the hardware and algorithms which is utilized 
to support such networks.  Section 3 presents the hardware used for relative localization on our own system of 
colony robots, whereas Section 4 describes the algorithm these robots use to relatively localize.  Section 5 and 6 
report the results of actual experimentation on our sensor sub-systems and our relative localization algorithm.  
Section 7 discusses the advantages and disadvantages of our solutions to the technical challenges of colony robots. 
Finally, the last section offers some concluding remarks and the future direction our project will take.  
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2. Background 
 
Recently there has been considerable interest in the localization problem for colony robots, as it is central to the 
development of distributed autonomous systems.  Two primary localization paradigms exist: centralized and 
distributed.  In centralized localization, sensor nodes exchange data with a common location, where computation is 
performed to calculate positions for each node in the network.  Distributed localization does not require a dominate 
node, and sensor nodes determine their position by communicating with neighboring nodes.  

Numerous methodologies have emerged to address multi-robot localization.  Monte Carlo Localization 
(MCL) combines filtering with probabilistic models.  The algorithm iteratively executes a prediction phase and an 
update phase, responding to increased positional uncertainty with new measurements to continually update its 
predicted location.  One group implements the Monte Carlo algorithm for distributed, range-free localization using 
wireless communication [3].  Their findings indicate mobility can actually improve the accuracy of localization.  

Markov localization is also a probabilistic algorithm that uses dead reckoning and environment 
measurements.  Detections are ignored, and hence each robot maintains a belief over its position that is independent 
from other robot positions.  In the most general case, the initial position of all robots is unknown and the system is 
initialized to a uniform distribution.  Markov localization has been implemented in a network of mobile robots 
equipped with cameras and laser range-finders [4].  They found that their approach reduced uncertainty when 
compared to conventional single-robot localization.  

Kalman filtering recursively computes each robot’s state based on its previous state.  A “centralized Kalman 
filter estimator” has combined sensor information across multiple robots to produce estimates of position at uniform 
accuracy [4].  Their implementation collected environment information using encoders, gyroscopes, and cameras.  

These algorithms utilize complex, high-accuracy sensors.  Sensors commonly employed include laser range 
finders, the global positioning system (GPS), color cameras, and omni-directional cameras [5-7].  Laser range 
finders are an expensive (~$5000) yet common way to accurately calculate range [5,8].  These sensors are 15cm x 
15cm x 18cm” and weigh 4.5 kg [9].  Although GPS (ranging from ~$100 to ~$2000) can calculate position 
information up to an accuracy of one meter, it is not available in all areas, for example in buildings [10].  This limits 
use of GPS, because many colonies are developed indoors.  In addition, an accuracy of one meter is not precise 
enough to colony robots.  These sensors are not feasible to use on small, low-cost robots; although their calculations 
are accurate, they are prohibitively expensive.   
 
3. Hardware 
 
To allow the creation of a large robot colony on a restricted budget, inexpensive robots must be used.  While cost 
considerations were paramount in the design of this robot, it must also be able to provide accurate and meaningful 
sensor data for use by the localization algorithm.  Our solution to this is a small $300 robot weighing just over 0.5 
kilograms, pictured in Figure 3.1. 
 

 
Figure 3.1 One of the colony robots 

 
The brain of each individual robot is the Cerebellum, a PIC16F877-based micro-controller produced by 

Botrics, LLC.  A Cerebellum costs $95 and can read analog sensor values, control the robot's servos, perform 
computation, as well as utilize a wireless board to send and receive data.  The Cerebellum is located centrally on the 
robot to allow easy electrical connection to all of the robot components. 



 

3 

To allow the robots to share world information, a RF wireless board (Figure 3.2a) was custom-designed after 
no existing small and inexpensive wireless solutions were found.  This wireless board attaches to the Cerebellum as 
a daughter-card, capturing the serial port of the PIC processor, in addition to the necessary control lines.  Total parts 
cost of the board is under $40 per robot.  One limitation of the Linx ES RF transmitters used on this board is that 
only one transmitter in the entire colony can be powered at a time or collisions render the data useless.  In order to 
avoid these transmission collisions, a token ring network layer was developed for the PIC processor. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.2 (a)The wireless board circuitry; (b)BOM circuit board; (c)Eltec IR-EYE and Sharp GP2D12 IR sensors 
 

With this network protocol, robots are able to communicate with one another and share the position data 
required for relative localization.  Since our relative localization approach was based on triangulation, it was also 
necessary to get either range or angle data between robots.  Originally, we attempted to gauge distance using the RF 
signal strength provided by the wireless receivers, but we found this data to be wildly inaccurate.  Thus, another 
source of relative location data was necessary. 

Further investigation revealed no practical low-cost solutions to the range finding problem, prompting the 
development of a new board that could obtain angle information instead of distance.  This yielded the Bearing and 
Orientation Sensor (BOM), a ring of 16 infrared (IR) emitter/detector pairs (Figure 3.2b), which could be 
constructed relatively inexpensively (~$17).  One robot lights all of its emitters, creating a ring of uniform IR light, 
while the rest of the robots in the colony use their IR detectors to determine the angle of the light source relative to 
the detecting robot.  The use of only 16 detectors provides discrete angle information (accurate to ±11.25 degrees).  
The board is elevated above the rest of the robot and requires line-of-sight from the emitting to the detecting robot.  
This is trivially achieved because all the robots operate in the same plane and are physically identical. 

Eventually, we hope to demonstrate and apply our relative localization algorithm in colony applications such 
as herding and obstacle avoidance, and have added hardware that will be used towards these applications in the 
future.  Now that the robots have relative localization, they need to be mobile and un-tethered to complete tasks. 
Mobility is accomplished by two wheels driven by two standard Hitec HS-311 servo motors costing $12 each.  The 
robots are self-contained with a $10 battery pack that lasts approximately 2 to 3 hours.  In addition to relative 
localization sensors, each robot also needs the ability to detect obstacles in its immediate environment.  Four 
collision sensors ($6 per robot) were installed, two in the front and two in the rear.  Each collision sensor consists of 
a leaf spring switch actuated by a 3” long piece of piano wire crimped to the leaf of the switch. 

The BOM board yields angle data, but distance is also necessary for real-world applications.  For this 
purpose, we use a Sharp GP2D120 infrared range finder ($12).  The combination of these sensors generates enough 
information for the robots to execute a cooperative task, such as the coordinated discovery and capture of a mobile 
target.  One such application is to model the capture of living beings that emit heat.  To detect heat, we therefore 
employ an Eltec IR-EYE ($60), which is a pyroelectric sensor (Figure 3.2c).  When a target is in range of this 
sensor, the IR rangefinder can be used in tandem to establish the distance to the target. 

All components of the robot designed in the course of this project are open source and can be found on the 
Carnegie Mellon University Robotics Club website, http://www.roboticsclub.org/. 
 
4. Algorithm for Relative Localization 
4.1 local geometric solution 
 
The main component of the algorithm uses a simple geometric method to solve the location of a point in a plane  
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from the position of two other points and the angles between those points.  This can be computed using the Law of 
Sines, which states that for any triangle ABC (as depicted in Figure 4.1), with angles ∠A, ∠B, ∠C, and sides AB, 
BC, CA, there exists the equality specified in equation (4.1). 
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Assume that two points, A and B, and angles ∠A, ∠B, and ∠C are known.  Then it is possible to solve the 

position of the third point, C, in one of two ways. 
 

 
Figure 4.1 Example triangle with labeled sides, vertices, and angles 

 
First, we can solve for the length of the side BC, using equation (4.2). 
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Once this is computed, we simply travel a distance |BC| from point B, using the angle ∠B and the global 

angle of point A relative to point B, which is essentially atan2(Ay – By, Ax – Bx) to determine the direction (atan2 is 
the arctangent function, sign corrected to output an angle in the range [-π, π). 

Alternately, solve for the length of the side CA, using equation (4.3). 
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Using a similar method, we can determine the angle at which to travel length |CA| from point A.  If our 

known variables are exact, then this ought to yield the same result in both cases.  However, if the known values are 
not exact, as is the case, a better approximation may be obtained from averaging results. 

The computational cost of this procedure is primarily bounded by two specific high-cost operations, since 
robots rely on a stored sine and cosine lookup table.  The first is performing the distance measurement between 
points A and B. The measurement requires a square root computation and an arctangent calculation necessary to find 
the direction in which point C lies, after the appropriate side is calculated.  It is possible to eliminate the latter cost 
by using two pieces of data outside of the point abstraction for robots.  Each robot is stored with an orientation and 
raw sensor data relating the directions from the robot to other detected robots.  By combining the two, the direction 
of point C can be ascertained with negligible expense. 
 
4.2 local iterative solution 
 
The sensor data robots receive is extremely low-resolution.  However using the above method, we require only two 
robots to find a possible solution for the position of an unknown robot.  Thus with n robots, we can construct (nC2)/2 
distinct solutions for the location of an unknown robot.  Each solution is averaged with the previous approximation, 
which prevents sudden glitches in position, and then stored as the best known approximation of the given robot.  It is 
then possible to reconstruct the position of the third robot to a much higher degree of accuracy than the individual 
results provide. 
 
4.3 global iterative solution 
 
The robots are arbitrarily ordered in a circular sequence.  Each robot maintains the approximated location and 
orientation of all of the other robots, along with an array of the angles at which the robot detects all other robots.  
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When the robots are initialized, these values are all zeroed.  Each robot then takes turns resolving its own position 
and orientation.  When it completes this operation, it broadcasts its updated position and orientation to the other 
robots, as well the most recent copy of its own sensor data.  This is followed by the next robot solving its position 
and orientation, and so forth.  As each robot refines its position calculation, the other robots use the updated location 
to improve their own positions.  Within 1 to 10 iterations, the system reaches a stable arrangement.  Robot 
movement subsequent to this point can be regarded as systematic error, and as such, is constantly compensated for 
as the algorithm iterates. 
 
 
5. Hardware Analysis 
5.1 the Bearing and Orientation Module 
 
Since the Bearing and Orientation Module (“BOM”) is the first sensing device of its kind for relative localization, it 
is important to characterize sensor error to determine the sensor’s usefulness.  To do so, two robots were positioned 
with a center-to-center distance of 30cm.  One robot, tethered to a constant voltage source, constantly emitted IR 
light through its sixteen LEDs.  The other robot was allowed to rotate in place for two rotations.  Every 10ms, 
analog readings were taken from each of the sixteen phototransistors and recorded.  Figure 5.1a is the raw data of 
such a test, where each trace is a series of phototransistor (sensor) readings from BOM number 1. 
 

 
(a) 

 
(b) 

Figure 5.1 Raw and filtered BOM data 
 

Sensor values recorded are lower as the perceived light intensity increases.  A cursory inspection of the data 
shows a general trend of coverage from each sensor, nearly completely filling the appropriate 22.5 degree span of 
each detector.  To figure out in which direction the robot is “seeing” the emitting robot, the microcontroller simply 
finds the sensor reporting the smallest value and therefore receiving the greatest amount of light.  To determine the 
confidence of a particular reading, the microcontroller considers the minimum value of all the sensors; the larger this 
value, the smaller the amount of confidence the robot has in the reading.  Figure 5.1b is a graph of the raw data, 
filtered to show the assumed direction and confidence level.  The confidence level is expressed as a percentage, 
which is computed with equation (5.1). 
 

255
)(255 readingssensorMIN−  (5.1) 

 
There are very few instances of the “wrong” sensor reading that it is more directly pointed toward the beacon 

source, though there is one notable example of sensor 10 mistakenly believing that it is pointed at the beacon 
between sensors 8 and 7 near 4.75s and 12.75s.  This error occurred without a corresponding low confidence.  We 
believe that this error can be remedied by adding shielding over each of the phototransistors to keep light from 
inadvertently entering the detector.  All other errors in detection have corresponding drops in confidence.  Besides 
adding shielding, we believe that we can reduce these errors by using IR phototransistors with a slightly wider 
angular response.  This will remove the confidence level discrepancy present at sensor-to-sensor boundaries. 
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5.2 Sharp GP2D12 infrared range sensor 
 
Because each robot has a Sharp IR range finder sensor, it is important to collect data that describes the typical 
behavior of these sensors as well as the variance between them.  The test for gathering data involved placing a 
detectable object in front of a robot with the IR range finding sensor at different distances and recording the sensor 
output.  Recordings occurred at distances that were 1cm apart with the first distance at 0cm away from the sensor 
and the last distance at 28cm from the sensor.  This test was repeated for each robot. 

The data showed what was already commonly known about these IR range finders.  The sensor output against 
the distance of the recording follows a power model of the form of equation (5.2) where y is the output value, x is 
the distance of the object from the center of the robot, and a and b are constants.  
 

baxy =  (5.2) 
 

As expected, this model fails when the sensor detects objects that are closer than ~3cm away.  Readings in 
this range drastically deviate from the power model due to the build of the sensor.  A power model was fit for the 
data of each sensor (for distances greater than ~3cm) and the constants a and b fall in the rough ranges of 370 to 500 
and negative 0.98 to negative 0.83, respectively.  It is important to note that some sensors fit their corresponding 
model better than others.  For example, the sensor on Robot 4 has an R squared value of 0.999 (as seen in Figure 
5.3a) while the sensor on Robot 3 only has an R squared value of 0.9928. 

 

 
(a) 

 
(b) 

Figure 5.3 IR sensor values with best fit line and sensor standard deviation 
 

It is more important, however, to describe the sensors collectively, namely how their performance varies from 
one to another.  The standard deviation was calculated using the collected sensor outputs at each recorded distance, 
so that the standard deviation of all the sensors can be described in terms of distance.  It was found that the standard 
deviation was very high when detecting objects at close range, roughly 0cm to 5cm.  These high values have a peak 
at the distance of 1cm, indicating that not only do the sensors not follow the power model at close range, but also 
have very large variability between each other.  The standard deviation is low and varies between 1.05 and 1.94 
while detecting objects in the range of 5cm to 28cm.  From this analysis, it is seen that the sensors are more 
predictable, collectively speaking, when detecting far objects and less predictable when detecting close range 
objects.  The standard deviation is shown in Figure 5.3b. 
 
6. Software Analysis 
 
The localization algorithm was run repeatedly on random sets of robot colonies to characterize the error of the 
algorithm.  The randomly placed robots’ sensor data was created by finding inter-robot angles to a 22.5 degree 
accuracy, with a random Gaussian error.  The generated sensor information was fed through the algorithm for ten 
iterations allowing each robot a chance to solve the layout.  The algorithm generates a world with arbitrary center, 
rotation and scale.  The layout makes it hard to compare the generated colony to the real colony.  To account for 
this, the difference in centering, rotation, and scaling for each robot between the calculated and actual values was 
recorded and averaged.  The average was used to transform (center, rotate, and scale) the entire colony to roughly 
the same position and orientation as the actual values.  Since the algorithm is only designed to calculate relative 
localization, which is maintained during these calculations, this transformation does not affect the accuracy of the 
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data.  There the error was noted as the distance between each robot's calculated position and actual position. Error 
for a given colony was taken as the average of each robot’s error. 

We found that the algorithm performs well overall, however occasionally a rouge robot will disrupt the entire 
colony’s position.  To mitigate this error, we dropped the robots with the highest errors from the final transformation 
calculations.  This made individual error higher, even though the rest of the colony’s error dropped.  

The units of error here were arbitrary.  The magnitude of the error is correlated to the robots placement, 
randomly, in a 1000 x 1000 unit box.  Graphical representations of colonies with average error of 18, 37, and 120 
are given for reference in Figure 6.1.  A visual analysis reveals that even the robots with the highest error are not far 
from accurate.  Generally speaking, adjacency and relative position were maintained even if part of the colony is 
displaced somewhat.  In the case of higher error, there are some portions that are close to accurate, and others that 
have been distorted but not completely wrong in terms of inter robot positions. 
 

   
(a)    (b)    (c) 

Figure 6.1 Colony simulations with average error of (a) 18 (b) 37 (c) 120, where black circles are real positions and 
grey are calculated (note that robot 5 in (a) is almost perfectly accurate). 

 
After test consisting of 1000 runs of ten robot colonies, a mean error of 63 units was determined. However 

the mean is a poor measure of the general accuracy of the method since it is heavily thrown by a few high outliers.  
The median of 36 is a better measure, and the mode of 17 is the highest point on the error distribution graph (Figure 
6.2). The dotted line on the graph represents the distribution of robot error with the refined algorithm that stops the 
most inaccurate robots from influencing calculations, while the solid line uses the original algorithm. 
 

 
Figure 6.2 Robot error distribution over 1000 runs of ten robots each. 

 
7. Discussion 
 
Why would one build a colony of robots with limited functionality when robust and functional colonies have been 
built by other researchers?  The short answer is money.  By limiting the size and mechanical capability of the robot, 
and using less accurate sensors, the total cost of the robot is very low.  This increases colony research in two ways.  
First, well-funded colony research groups can now build colonies with greater numbers of robots, which allows 
different algorithms and techniques to be explored.  Secondly, colony research is now possible for groups who could 
not previously afford it. 
 Of course, when inexpensive and inaccurate components are used, new problems are presented.  For example, 
the angular input to the relative localization algorithm has error of plus or minus 11.25 degrees.  This increases the 
complexity of the position solver as well as making its output less precise.  Had expensive and accurate sensors been 
used the software could have been simplified, but the quantity of data would greatly increase, pushing up 
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computational requirements.  Obviously, there is a trade off between accuracy and performance over cost.  Our aim 
is to show that useful work can be performed at the low cost-end. 
 The colony is not up and running due to architectural limitations of our processor.  We have, however, proved 
that all the main subsystems work.  The token ring network is functional, the BOM works as an angular sensor, the 
pyroelectric and infrared distance sensors are accurate and repeatable.  Future work will mainly be focused on 
adding software functionality to the robots.  The relative localization algorithm has been successfully ported to the 
PIC processor.  While the entirety of the algorithm takes fewer than 2000 assembly instructions, the required arrays 
of position and sensor data do not leave room for robot control, networking, or behavioral state.  It is expected that 
the colony robots will move to an ATMEL-based architecture or that a second PIC processor will be added to 
increase processing capability and data storage.  Work on the localization algorithm will also include better error 
identification and rejection, as well as static obstacle detection and reporting on the world map.  Hardware 
improvements include adding a few more sensors to the BOM to fill in detection gaps.  Additionally, features 
necessary for large colonies like automatic robot recharging and automatic distributed programming will be 
investigated.  
 
8. Conclusion 
 
We have developed hardware and software that has the potential to form a low-cost colony robot.  We have 
demonstrated the effectiveness of our custom hardware, sensor package and relative localization algorithm.  Future 
research will be conducted on integrating these sub-systems into a fully functional colony. 
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