
Relative Localization in
Colony Robots

Christopher Atwood, Felix Duvallet, Aaron Johnson,
Richard Juchniewicz, Ryan Kellogg, Katherine Killfoile,
Alison Naaktgeboren, Suresh Nidhiry, Iain Proctor,
Justine Rembisz, Steven Shamlian, Prasanna Velagapudi

Carnegie Mellon

http://bigblue.res.cmu.edu/cgi-bin/album.pl?photo=colony/Group/DSC02231.JPG

Colony Robotics Background

• Uses

– Mapping

– Searching

– Modeling behaviors

– Herding

* http://www.pbs.org/wgbh/nova/sciencenow/3204/03-talk.html

*

Colony Robotics Background

• Examples

– MIT Swarm

– The Georgia Tech Network for

Autonomous Tasks (GNATS)

– Robocup Soccer (Aibo and

Segway Leagues)

* http://borg.cc.gatech.edu/gnats/

*

Colony Robotics Background

• Important Characteristics

– Multiple robots

– Distributed processing

– Distributed sensing

• Advantages

– Improved fault tolerance

– Utilization of emergent behaviors

* http://www-2.cs.cmu.edu/~robosoccer/image-gallery/index.html

*

Colony][

Colony][

• Our Approach

– Low cost (~$300)

– Imprecise sensors

– Limited computation

– Off-the-shelf parts

• Capabilities

– Wireless communication

– Relative localization

– Heat source detection and tracking

Relative Localization

• “A method whereby each robot may

determine the pose of every other robot in

the team, relative to itself.”*

• Developed an algorithm to accomplish this

using minimal sensor data and basic

geometry.

*Howard, Andrew, et.al. “Cooperative relative localization for mobile robot teams: an egocentric

 approach.” [Online Document]. Available:

 http://robotics.usc.edu/~ahoward/pubs/howard_mrsw03a.pdf

Hardware

• Pyroelectric Sensor

– Used to detect and track

heat sources

• Wireless Board

– Used for multi-robot

communication

• Bearing and Orientation

Module (BOM)

– Used to gather relative

angle data between robots

Hardware

• Pyroelectric Sensor

– Used to detect and track

heat sources

• Wireless Board

– Used for multi-robot

communication

• Bearing and Orientation

Module (BOM)

– Used to gather relative

angle data between robots

Wireless: Hardware

• 900 MHz RF

transmitter/receiver

pair

– Half-duplex

– ~30ft effective range

– Broadcast

transmission

– Low profile

daughterboard design

Wireless: Software

• Static token ring

– Synchronous network

protocol

– Linked to BOM operation

• Used as “beacon” while

transmitting data

• Used to determine

sender bearing while

receiving

– Passively listens to

network traffic

– Calculates angle data

to every other robot in

one token ring cycle

Bearing and Orientation Module

• Coplanar IR emitter

and IR detector ring

• IR emitter mode

– All emitters are powered

simultaneously (beacon)

• IR detector mode

– Detectors can be polled

for analog intensity

readings

Bearing and Orientation Module

• IR emissions from one

robot are highly visible to

other robots

• Most excited detector is

assumed to be pointing

in the direction of the

emitting robot.

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BOM Detection Test

Raw Data Over Two Full Rotations

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (seconds)

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7

Sensor 8

Sensor 9

Sensor 10

Sensor 11

Sensor 12

Sensor 13

Sensor 14

Sensor 15

Sensor 16

Robot 1 BoM Detection Test

Filtered Data Over Two Full Rotations

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400 1600

Time (centiseconds)

M
o

s
t

E
x
c
it

e
d

 S
e
n

s
o

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

n
fi

d
e
n

c
e
 L

e
v
e
l

(p
e
rc

e
n

t)

Software

• Relative triangulation

– Each robot stores the

relative angle from

itself to every other

robot

– If the position of two

robots is known, the

position of a third can

be calculated

Software

• solve_self(C) {

 for each pair of robots (A, B) {

 solve_triangle(A, B, C)

 }

 if (C == 0)

 recenter_robots()

}

• Iterate through robots
until stable state is
reached (~10 cycles)
– Closely approximates

actual positions

– Self-corrects as new data
is introduced (with further
iteration)

Software

• Solve_self(C) {

 for each pair of robots (A, B) {

 solve_triangle(A, B, C)

 }

 if (C == 0)

 recenter_robots()

}

• Iterate through robots
until stable state is
reached (~10 cycles)
– Closely approximates

actual positions

– Self-corrects as new data
is introduced (with further
iteration)

Software

• Solve_self(C) {

 for each pair of robots (A, B) {

 solve_triangle(A, B, C)

 }

 if (C == 0)

 recenter_robots()

}

• Iterate through robots
until stable state is
reached (~10 cycles)
– Closely approximates

actual positions

– Self-corrects as new data
is introduced (with further
iteration)

Software

• Solve_self(C) {

 for each pair of robots (A, B) {

 solve_triangle(A, B, C)

 }

 if (C == 0)

 recenter_robots()

}

• Iterate through robots
until stable state is
reached (~10 cycles)
– Closely approximates

actual positions

– Self-corrects as new data
is introduced (with further
iteration)

Software

• Solve_self(C) {

 for each pair of robots (A, B) {

 solve_triangle(A, B, C)

 }

 if (C == 0)

 recenter_robots()

}

• Iterate through robots
until stable state is
reached (~10 cycles)
– Closely approximates

actual positions

– Self-corrects as new data
is introduced (with further
iteration)

Software

• Solve_self(C) {

 for each pair of robots (A, B) {

 solve_triangle(A, B, C)

 }

 if (C == 0)

 recenter_robots()

}

• Iterate through robots
until stable state is
reached (~10 cycles)
– Closely approximates

actual positions

– Self-corrects as new data
is introduced (with further
iteration)

Software

• Solve_self(C) {

 for each pair of robots (A, B) {

 solve_triangle(A, B, C)

 }

 if (C == 0)

 recenter_robots()

}

• Iterate through robots
until stable state is
reached (~10 cycles)
– Closely approximates

actual positions

– Self-corrects as new data
is introduced (with further
iteration)

Data Collection

• Simulator
– Reads robot positions from file

– Introduces slight Gaussian Error

– Runs localization algorithm for 1000 trials
• Each trial consists of 10 iterations

• Error measurement
– Robots centered, rotated, and scaled to minimize

error distances

– Distance between transformed position matrices is
totaled for standard error

– Outliers are removed from data set, and error
recalculated for “best” error

Red – predicted positions
Black – actual positions

Typical Error of ~12

Typical Error of ~72
Red – predicted positions
Black – actual positions

Typical Error of ~280
Red – predicted positions
Black – actual positions

Analysis

• Practical and robust algorithm

– Provides reasonable accuracy

– Modest fault tolerance

– Ideal for low-accuracy, behavior-based systems

• Lightweight processing

– Requires only small (O(n)) length transmissions to be

exchanged between robots

– Optimized solving kernel is only ~2000 RISC

assembly instructions (per robot per cycle)

Summary

• Created a low-cost toolkit for colony

development

– All hardware and software is open source

– http://www.roboticsclub.org/colony/

– Lowers barrier to entry on colony research

Future Research

• Integrating sub-parts into a functional

colony for further emergent behavior

research

• Further characterization of sensor error

• Improve error rejection in relative

localization algorithm

• Dynamic mesh networking

• Autonomous robot recharging

