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Colony Robotics Background 

• Uses 

– Mapping 

– Searching 

– Modeling behaviors 

– Herding 

* http://www.pbs.org/wgbh/nova/sciencenow/3204/03-talk.html 

* 



Colony Robotics Background 

• Examples 

– MIT Swarm 

– The Georgia Tech Network for 

Autonomous Tasks (GNATS) 

– Robocup Soccer (Aibo and 

Segway Leagues) 

* http://borg.cc.gatech.edu/gnats/ 

* 



Colony Robotics Background 

• Important Characteristics 

– Multiple robots 

– Distributed processing 

– Distributed sensing 

• Advantages 

– Improved fault tolerance 

– Utilization of emergent behaviors 

* http://www-2.cs.cmu.edu/~robosoccer/image-gallery/index.html 

* 
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• Our Approach 

– Low cost (~$300) 

– Imprecise sensors 

– Limited computation 

– Off-the-shelf parts 

 

• Capabilities 

– Wireless communication  

– Relative localization 

– Heat source detection and tracking 

 

 



Relative Localization 

• “A method whereby each robot may 

determine the pose of every other robot in 

the team, relative to itself.”* 

 

• Developed an algorithm to accomplish this 

using minimal sensor data and basic 

geometry. 
 

*Howard, Andrew, et.al. “Cooperative relative localization for mobile robot teams: an egocentric 

 approach.” [Online Document]. Available: 

 http://robotics.usc.edu/~ahoward/pubs/howard_mrsw03a.pdf 



Hardware 

• Pyroelectric Sensor 

– Used to detect and track 

heat sources 

• Wireless Board 

– Used for multi-robot 

communication  

• Bearing and Orientation 

Module (BOM) 

– Used to gather relative 

angle data between robots 
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Wireless: Hardware 

• 900 MHz RF 

transmitter/receiver 

pair 

– Half-duplex 

– ~30ft effective range 

– Broadcast 

transmission 

– Low profile 

daughterboard design 



Wireless: Software 

• Static token ring 

– Synchronous network 

protocol 

– Linked to BOM operation 

• Used as “beacon” while 

transmitting data 

• Used to determine 

sender bearing while 

receiving 

– Passively listens to 

network traffic 

– Calculates angle data 

to every other robot in 

one token ring cycle 

 

 

 



Bearing and Orientation Module 

• Coplanar IR emitter 

and IR detector ring 

• IR emitter mode 

– All emitters are powered 

simultaneously (beacon) 

• IR detector mode 

– Detectors can be polled 

for analog intensity 

readings 



Bearing and Orientation Module 

• IR emissions from one 

robot are highly visible to 

other robots 

• Most excited detector is 

assumed to be pointing 

in the direction of the 

emitting robot. 
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Robot 1 BoM Detection Test

Filtered Data Over Two Full Rotations
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Software 

• Relative triangulation 

– Each robot stores the 

relative angle from 

itself to every other 

robot 

– If the position of two 

robots is known, the 

position of a third can 

be calculated 



Software 

• solve_self(C) { 

 for each pair of robots (A, B) { 

  solve_triangle(A, B, C) 

 } 

 if (C == 0) 

  recenter_robots() 

} 

• Iterate through robots 
until stable state is 
reached (~10 cycles) 
– Closely approximates 

actual positions 

– Self-corrects as new data 
is introduced (with further 
iteration) 
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Data Collection 

• Simulator 
– Reads robot positions from file 

– Introduces slight Gaussian Error 

– Runs localization algorithm for 1000 trials 
• Each trial consists of 10 iterations 

• Error measurement 
– Robots centered, rotated, and scaled to minimize 

error distances 

– Distance between transformed position matrices is 
totaled for standard error 

– Outliers are removed from data set, and error 
recalculated for “best” error 





Red – predicted positions 
Black – actual positions 

Typical Error of ~12 



Typical Error of ~72 
Red – predicted positions 
Black – actual positions 



Typical Error of ~280 
Red – predicted positions 
Black – actual positions 



Analysis 

• Practical and robust algorithm 

– Provides reasonable accuracy 

– Modest fault tolerance 

– Ideal for low-accuracy, behavior-based systems 

• Lightweight processing 

– Requires only small (O(n)) length transmissions to be 

exchanged between robots 

– Optimized solving kernel is only ~2000 RISC 

assembly instructions (per robot per cycle) 

 

 



Summary 

• Created a low-cost toolkit for colony 

development 

– All hardware and software is open source 

– http://www.roboticsclub.org/colony/ 

– Lowers barrier to entry on colony research  

 

 



Future Research  

• Integrating sub-parts into a functional 

colony for further emergent behavior 

research 

• Further characterization of sensor error 

• Improve error rejection in relative 

localization algorithm 

• Dynamic mesh networking 

• Autonomous robot recharging  




